Exercise 8.5.1

Nicolai Siim Larsen

02407 Stochastic Processes

We consider an Ornstein-Uhlenbeck process $\left\{V_{t}\right\}_{t \geq 0}$ with parameters $\sigma^{2}=1$ and $\beta=0.2$, and initial value $V_{0}=0$. We solve this exercise through a straightforward application of eq. (8.60), i.e.

$$
\mathbb{P}\left(V_{t} \leq 1 \mid V_{0}=0\right)=\Phi\left(\frac{\sqrt{2 \beta}}{\sigma \sqrt{1-e^{-2 \beta t}}}\right)=\Phi\left(\frac{\sqrt{0.4}}{\sqrt{1-e^{-0.4 t}}}\right)=\Phi\left(\sqrt{\frac{0.4}{1-e^{-0.4 t}}}\right)
$$

where Φ denotes the distribution function for a random variable following a standard normal distribution. By inserting the different time points, we obtain the values:

$$
\begin{aligned}
& \mathbb{P}\left(V_{1} \leq 1 \mid V_{0}=0\right)=\Phi\left(\sqrt{\frac{0.4}{1-e^{-0.4}}}\right)=0.8647 \\
& \mathbb{P}\left(V_{10} \leq 1 \mid V_{0}=0\right)=\Phi\left(\sqrt{\frac{0.4}{1-e^{-4}}}\right)=0.7384 \\
& \mathbb{P}\left(V_{100} \leq 1 \mid V_{0}=0\right)=\Phi\left(\sqrt{\frac{0.4}{1-e^{-40}}}\right)=0.7365
\end{aligned}
$$

I have used the pnorm-function from the R software to calculate the values of $\Phi(x)$.

